Comparative Study of Some Numerical Schemes for a Fractional Order Model of HIV Infection Treatment

نویسندگان

چکیده

A fractional order mathematical model that already exists in the literature, was considered. This established to study effects of medicinal treatment people infected with human immunodeficiency virus (HIV). The importance this is evaluates, among other parameters, density healthy and HIV-infected CD4+ T cells. These data are very necessary for subject by given an antiretroviral causes it. objective work consider several numerical schemes involve derivatives compare their behaviors obtain a good approximation mentioned solution. Convergence these will be studied as well sensitivity respect variation parameters η (drug efficacy) α (fractional derivative order). Furthermore, through collection medical records living HIV, it intended determine optimal classical model.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical solution of a fractional order model of HIV infection of CD4+T cells.

In this paper we consider a fractional order model of HIV infection of  CD4+T cells and we transform this fractional order system of ordinary differential equations to a system of weakly singular integral equations. Afterwards we propose a Nystrom method for solving resulting system, convergence result and order of convergence is obtained by using conditions of existence and uniqueness of solut...

متن کامل

Numerical analysis of fractional order model of HIV-1 infection of CD4+ T-cells

In this article, we present a fractional order HIV-1 infection model of CD4+ T-cell. We analyze the effect of the changing the average number of the viral particle N with initial conditions of the presented model. The Laplace Adomian decomposition method is applying to check the analytical solution of the problem. We obtain the solutions of the fractional order HIV-1 model in the form of infini...

متن کامل

Stability Analysis of a Fractional Order Model of HIV virus and AIDS Infection in the Community

In  this  paper a  non-linear  model  with  fractional  order  is  presented  for  analyzing  and  controlling the  spread  of  HIV virus.  Both  the  disease-free  equilibrium and the endemic equilibrium are  found  and  their  stability is  discussed. The basic reproduction number , which is a function of the constant parameters in the model, plays an essential  role in the stability of  the ...

متن کامل

numerical analysis of fractional order model of hiv-1 infection of cd4+ t-cells

in this article, we present a fractional order hiv-1 infectionmodel of cd4+ t-cell. we analyze the effect of the changing the averagenumber of the viral particle n with initial conditions of the presentedmodel. the laplace adomian decomposition method is applying to checkthe analytical solution of the problem. we obtain the solutions of thefractional order hiv-1 model in the form of infinite se...

متن کامل

A nonstandard finite difference scheme for solving‎ ‎fractional-order model of HIV-1 infection of‎ ‎CD4^{+} t-cells

‎In this paper‎, ‎we introduce fractional-order into a model of HIV-1 infection of CD4^+ T--cells‎. ‎We study the effect of ‎the changing the average number of viral particles $N$ with different sets of initial conditions on the dynamics of‎ ‎the presented model‎. ‎ ‎The nonstandard finite difference (NSFD) scheme is implemented‎ ‎to study the dynamic behaviors in the fractional--order HIV-1‎ ‎...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Trends in Computational and Applied Mathematics

سال: 2022

ISSN: ['2676-0029']

DOI: https://doi.org/10.5540/tcam.2022.023.04.00607